Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613035

RESUMO

Lactose intolerance, which affects about 65-75% of the world's population, is caused by a genetic post-weaning deficiency of lactase, the enzyme required to digest the milk sugar lactose, called lactase non-persistence. Symptoms of lactose intolerance include abdominal pain, bloating and diarrhea. Genetic variations, namely lactase persistence, allow some individuals to metabolize lactose effectively post-weaning, a trait thought to be an evolutionary adaptation to dairy consumption. Although lactase non-persistence cannot be altered by diet, prebiotic strategies, including the consumption of galactooligosaccharides (GOSs) and possibly low levels of lactose itself, may shift the microbiome and mitigate symptoms of lactose consumption. This review discusses the etiology of lactose intolerance and the efficacy of prebiotic approaches like GOSs and low-dose lactose in symptom management.


Assuntos
Intolerância à Lactose , Humanos , Intolerância à Lactose/genética , Lactose , Lactase/genética , Dor Abdominal , Evolução Biológica , Prebióticos
2.
PLoS One ; 18(12): e0295657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096330

RESUMO

Yeast-derived products have become more of an interest in the poultry industry as of late because of their use in modulating the gastrointestinal tract (GIT) microbiome to both improve production parameters and prevent infection. This study aimed to evaluate the effects of various yeast-derived products on Salmonella enterica inoculation in un in vitro rooster cecal incubations and associated effects on the cecal microbiome. Cecal contents were obtained from 53-wk old White Leghorn H & N Nick Chick roosters (n = 3) fed a wheat-based, commercial-type basal diet. Cecal contents were diluted 1:3000 in anaerobic dilution solution (ADS) in an anaerobic chamber, with 20 mL aliquoted to each serum bottle. There were three controls (n = 3): basal diet only, diluted cecal contents only, and basal diet and diluted cecal contents; and five treatments containing the basal diet and diluted cecal contents (n = 3): Citristim® (ADM), ImmunoWall® (ICC), Maxi-Gen Plus® (CBS Bio Platforms), Hilyses® (ICC), and Original XPC® (Diamond V). All treatments were applied at a rate of 2.5 kg/tonne or less. All groups were inoculated with a nalidixic acid-resistant strain of Salmonella Enteritidis at 10^7 CFU/mL and incubated at 37 deg C. Samples were collected at 0, 24, and 48 h for S. Enteritidis enumeration and 16S rDNA microbial sequencing. Salmonella data were log-transformed and analyzed in a two-way ANOVA with means separated using Tukey's HSD (P≤0.05). Genomic DNA was extracted, and resulting libraries were prepared and sequenced using an Illumina MiSeq. Sequencing data were analyzed in QIIME2 (2021.4) with diversity metrics (alpha and beta), and an analysis of the composition of microbiomes (ANCOM) was performed. Main effects were considered significant at P≤0.05, with pairwise differences considered significant at Q≤0.05. There was an interaction of treatment and time on the enumeration of Salmonella where treatments of Citristim, Immunowall, Hilyses, and XPC reduced Salmonella by 1 log CFU/mL compared to the controls. At 48 h, each yeast product treatment reduced Salmonella by 3 log CFU/mL compared to the controls. There was no main effect of treatment on the alpha diversity metrics, richness, or evenness (P > 0.05). Treatment affected the beta diversity, abundance, and phylogenetic differences, but there were no pairwise differences (P>0.05, Q>0.05). Using ANCOM at the genus level, the taxa Synergistes, Alloprevotella, Sutterella, and Megasphaera abundance were significantly different (W = 154,147,145,140, respectively). These results demonstrate the potential of these yeast-derived products to reduce foodborne pathogens, such as Salmonella Enteriditis, in vitro, without negatively disrupting the cecal microbiome.


Assuntos
Ração Animal , Ceco , Galinhas , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Salmonella enteritidis , Animais , Masculino , Ração Animal/análise , Ceco/microbiologia , Dieta , Microbiota , Filogenia , Doenças das Aves Domésticas/prevenção & controle , Saccharomyces cerevisiae , Salmonelose Animal/prevenção & controle
3.
Food Sci Biotechnol ; 32(13): 1949, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37781050

RESUMO

[This corrects the article DOI: 10.1007/s10068-020-00811-w.].

4.
Nutrients ; 15(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836457

RESUMO

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that affects 10-15% of the global population and presents symptoms such as abdominal discomfort, bloating and altered bowel habits. IBS is believed to be influenced by gut microbiota alterations and low-grade inflammation. Bovine kappa-casein glycomacropeptide (GMP), a bioactive dairy-derived peptide, possesses anti-adhesive, prebiotic and immunomodulatory properties that could potentially benefit IBS patients. This pilot study investigated the effects of daily supplementation with 30 g of GMP for three weeks on gut health in five people with IBS. We assessed alterations in gut microbiota composition, fecal and blood inflammatory makers, and gut-related symptoms before, during and after the GMP feeding period. The results revealed no changes in fecal microbiota, subtle effects on systemic and intestinal immune makers, and no changes in gut-related symptoms during and after the GMP supplementation. Further research is needed to assess the potential benefits of GMP in IBS patients, including the examination of dosage and form of GMP supplementation.


Assuntos
Gastroenteropatias , Síndrome do Intestino Irritável , Humanos , Adulto , Animais , Bovinos , Síndrome do Intestino Irritável/tratamento farmacológico , Caseínas/farmacologia , Caseínas/uso terapêutico , Projetos Piloto , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico
6.
Nutrients ; 15(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37764775

RESUMO

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder marked by chronic abdominal pain, bloating, and irregular bowel habits. Effective treatments are still actively sought. Kappa-casein glycomacropeptide (GMP), a milk-derived peptide, holds promise because it can modulate the gut microbiome, immune responses, gut motility, and barrier functions, as well as binding toxins. These properties align with the recognized pathophysiological aspects of IBS, including gut microbiota imbalances, immune system dysregulation, and altered gut barrier functions. This review delves into GMP's role in regulating the gut microbiome, accentuating its influence on bacterial populations and its potential to promote beneficial bacteria while inhibiting pathogenic varieties. It further investigates the gut microbial shifts observed in IBS patients and contemplates GMP's potential for restoring microbial equilibrium and overall gut health. The anti-inflammatory attributes of GMP, especially its impact on vital inflammatory markers and capacity to temper the low-grade inflammation present in IBS are also discussed. In addition, this review delves into current research on GMP's effects on gut motility and barrier integrity and examines the changes in gut motility and barrier function observed in IBS sufferers. The overarching goal is to assess the potential clinical utility of GMP in IBS management.

7.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599629

RESUMO

Aquaculture is one of the most significant food sources from the prehistoric period. As aquaculture intensifies globally, the prevalence and outbreaks of various pathogenic microorganisms cause fish disease and heavy mortality, leading to a drastic reduction in yield and substantial economic loss. With the modernization of the aquaculture system, a new challenge regarding biofilms or bacterial microenvironments arises worldwide, which facilitates pathogenic microorganisms to survive under unfavorable environmental conditions and withstand various treatments, especially antibiotics and other chemical disinfectants. However, we focus on the mechanistic association between those microbes which mainly form biofilm and probiotics in one of the major food production systems, aquaculture. In recent years, probiotics and their derivatives have attracted much attention in the fisheries sector to combat the survival strategy of pathogenic bacteria. Apart from this, Bibliometric analysis provides a comprehensive overview of the published literature, highlighting key research themes, emerging topics, and areas that require further investigation. This information is valuable for researchers, policymakers, and stakeholders in determining research priorities and allocating resources effectively.

8.
Appl Microbiol Biotechnol ; 107(19): 6047-6056, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542576

RESUMO

Listeria monocytogenes is a pathogenic bacterium which can live in adverse environments (low pH, high salinity, and low temperature). Even though there are various whole genome sequencing (WGS) data on L. monocytogenes, investigations on genetic differences between stress-resistant and -sensitive L. monocytogenes grown under stress environments have been not fully examined. This study aims to investigate and compare genetic characteristics between stress-resistant and -sensitive L. monocytogenes using whole genome sequencing (WGS). A total of 47 L. monocytogenes strains (43 stress-resistant and 4 stress-sensitive) were selected based on the stress-resistance tests under pH 3, 5% salt concentration, and 1 °C. The sequencing library for WGS was prepared and sequenced using an Illumina MiSeq. Genetic characteristics of two different L. monocytogenes groups were examined to analyze the pangenome, functionality, virulence, antibiotic resistance, core, and unique genes. The functionality of unique genes in the stress-resistant L. monocytogenes was distinct compared to the stress-sensitive L. monocytogenes, such as carbohydrate and nucleotide transport and metabolism. The lisR virulence gene was detected more in the stress-resistant L. monocytogenes than in the stress-sensitive group. Five stress-resistant L. monocytogenes strains possessed tet(M) antibiotic resistance gene. This is the first study suggesting that deep genomic characteristics of L. monocytogenes may have different resistance level under stress conditions. This new insight will aid in understanding the genetic relationship between stress-resistant and -sensitive L. monocytogenes strains isolated from diverse resources. KEY POINTS: • Whole genomes of L. monocytogenes isolated from three different sources were analyzed. • Differences in two L. monocytogenes groups were identified in functionality, virulence, and antibiotic resistance genes. • This study first examines the association between resistances and whole genomes of stress-resistant and -sensitive L. monocytogenes.


Assuntos
Listeria monocytogenes , Listeria monocytogenes/genética , Microbiologia de Alimentos , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
9.
J Food Sci ; 88(9): 3935-3955, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37477280

RESUMO

Establishing efficient methods to combat bacterial biofilms is a major concern. Natural compounds, such as essential oils derived from plants, are among the favored and recommended strategies for combatting bacteria and their biofilm. Therefore, we evaluated the antibiofilm properties of peppermint oil as well as the activities by which it kills bacteria generally and particularly their biofilms. Peppermint oil antagonistic activities were investigated against Vibrio parahaemolyticus, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli O157:H7, and Salmonella Typhimurium on four food contact surfaces (stainless steel, rubber, high-density polyethylene, and polyethylene terephthalate). Biofilm formation on each studied surface, hydrophobicity, autoaggregation, metabolic activity, and adenosine triphosphate quantification were evaluated for each bacterium in the presence and absence (control) of peppermint oil. Real-time polymerase chain reaction, confocal laser scanning microscopy, and field-emission scanning electron microscopy were utilized to analyze the effects of peppermint oil treatment on the bacteria and their biofilm. Results showed that peppermint oil (1/2× minimum inhibitory concentration [MIC], MIC, and 2× MIC) substantially lessened biofilm formation, with high bactericidal properties. A minimum of 2.5-log to a maximum of around 5-log reduction was attained, with the highest sensitivity shown by V. parahaemolyticus. Morphological experiments revealed degradation of the biofilm structure, followed by some dead cells with broken membranes. Thus, this study established the possibility of using peppermint oil to combat key foodborne and food spoilage pathogens in the food processing environment.


Assuntos
Listeria monocytogenes , Óleos Voláteis , Mentha piperita , Óleos Voláteis/farmacologia , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Biofilmes
10.
Compr Rev Food Sci Food Saf ; 22(4): 3395-3421, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37288815

RESUMO

Various foodborne viruses have been associated with human health during the last decade, causing gastroenteritis and a huge economic burden worldwide. Furthermore, the emergence of new variants of infectious viruses is growing continuously. Inactivation of foodborne viruses in the food industry is a formidable task because although viruses cannot grow in foods, they can survive in the food matrix during food processing and storage environments. Conventional inactivation methods pose various drawbacks, necessitating more effective and environmentally friendly techniques for controlling foodborne viruses during food production and processing. Various inactivation approaches for controlling foodborne viruses have been attempted in the food industry. However, some traditionally used techniques, such as disinfectant-based or heat treatment, are not always efficient. Nonthermal techniques are considered a new platform for effective and safe treatment to inactivate foodborne viruses. This review focuses on foodborne viruses commonly associated with human gastroenteritis, including newly emerged viruses, such as sapovirus and Aichi virus. It also investigates the use of chemical and nonthermal physical treatments as effective technologies to inactivate foodborne viruses.


Assuntos
Gastroenterite , Vírus , Humanos , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Alimentos
11.
AMB Express ; 13(1): 30, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36899131

RESUMO

The Burkholderia cepacia complex (BCC) is a Gram-negative bacterial, including Burkholderia contaminans species. Although the plain Burkholderia is pervasive from taxonomic and genetic perspectives, a common characteristic is that they may use the quorum-sensing (QS) system. In our previous study, we generated the complete genome sequence of Burkholderia contaminans SK875 isolated from the respiratory tract. To our knowledge, this is the first study to report functional genomic features of B. contaminans SK875 for understanding the pathogenic characteristics. In addition, comparative genomic analysis for five B. contaminans genomes was performed to provide comprehensive information on the disease potential of B. contaminans species. Analysis of average nucleotide identity (ANI) showed that the genome has high similarity (> 96%) with other B. contaminans strains. Five B. contaminans genomes yielded a pangenome of 8832 coding genes, a core genome of 5452 genes, the accessory genome of 2128 genes, and a unique genome of 1252 genes. The 186 genes were specific to B. contaminans SK875, including toxin higB-2, oxygen-dependent choline dehydrogenase, and hypothetical proteins. Genotypic analysis of the antimicrobial resistance of B. contaminans SK875 verified resistance to tetracycline, fluoroquinolone, and aminoglycoside. Compared with the virulence factor database, we identified 79 promising virulence genes such as adhesion system, invasions, antiphagocytic, and secretion systems. Moreover, 45 genes of 57 QS-related genes that were identified in B. contaminans SK875 indicated high sequence homology with other B. contaminans strains. Our results will help to gain insight into virulence, antibiotic resistance, and quorum sensing for B. contaminans species.

12.
AMB Express ; 13(1): 18, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36795258

RESUMO

The natural soil environment is considered one of the most diverse habitats containing numerous bacteria, fungi, and larger organisms such as nematodes, insects, or rodents. Rhizosphere bacteria play vital roles in plant nutrition and the growth promotion of their host plant. The aim of this study was to evaluate the effects of three plant growth-promoting rhizobacteria (PGPR), Bacillus subtilis, Bacillus amyloliquefaciens, and Pseudomonas monteilii for their potential role as a biofertilizer. The effect of the PGPR was examined at a commercial strawberry farm in Dayton, Oregon. The PGPR were applied to the soil of the strawberry (Fragaria × ananassa cultivar Hood) plants in two different concentrations of PGPR, T1 (0.24% PGPR) and T2 (0.48% PGPR), and C (no PGPR). A total of 450 samples from August 2020 to May 2021 were collected, and microbiome sequencing based on the V4 region of the 16S rRNA gene was conducted. The strawberry quality was measured by sensory evaluation, total acidity (TA), total soluble solids (TSS), color (lightness and chroma), and volatile compounds. Application of the PGPR significantly increased the populations of Bacillus and Pseudomonas and promoted the growth of nitrogen-fixing bacteria. The TSS and color evaluation showed that the PGPR presumptively behaved as a ripening enhancer. The PGPR contributed to the production of fruit-related volatile compounds, while the sensory evaluation did not show significant differences among the three groups. The major finding of this study suggests that the consortium of the three PGPR have a potential role as a biofertilizer by supporting the growth of other microorganisms (nitrogen-fixing bacteria) as part of a synergetic effect and strawberry quality such as sweetness and volatile compounds.

13.
Compr Rev Food Sci Food Saf ; 22(3): 1555-1596, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36815737

RESUMO

Poultry is thriving across the globe. Chicken meat is the most preferred poultry worldwide, and its popularity is increasing. However, poultry also threatens human hygiene, especially as a fomite of infectious diseases caused by the major foodborne pathogens (Campylobacter, Salmonella, and Listeria). Preventing pathogenic bacterial biofilm is crucial in the chicken industry due to increasing food safety hazards caused by recurring contamination and the rapid degradation of meat, as well as the increased resistance of bacteria to cleaning and disinfection procedures commonly used in chicken processing plants. To address this, various innovative and promising strategies to combat bacterial resistance and biofilm are emerging to improve food safety and quality and extend shelf-life. In particular, natural compounds are attractive because of their potential antimicrobial activities. Natural compounds can also boost the immune system and improve poultry health and performance. In addition to phytochemicals, bacteriophages, nanoparticles, coatings, enzymes, and probiotics represent unique and environmentally friendly strategies in the poultry processing industry to prevent foodborne pathogens from reaching the consumer. Lactoferrin, bacteriocin, antimicrobial peptides, cell-free supernatants, and biosurfactants are also of considerable interest for their prospective application as natural antimicrobials for improving the safety of raw poultry meat. This review aims to describe the feasibility of these proposed strategies and provide an overview of recent published evidences to control microorganisms in the poultry industry, considering the human health, food safety, and economic aspects of poultry production.


Assuntos
Campylobacter , Aves Domésticas , Animais , Humanos , Microbiologia de Alimentos , Inocuidade dos Alimentos , Carne/microbiologia , Bactérias
14.
Crit Rev Food Sci Nutr ; : 1-28, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066482

RESUMO

The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.

15.
Foods ; 11(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076729

RESUMO

The pseudofruit of A. othonianum Rizzini, "Cerrado" cashew pulp, has been described as rich in flavonoids, phenolic compounds, and vitamin C. The objective of this work was to evaluate the beneficial health effects seen with the addition of "Cerrado" cashew pulp (CP) to an obesogenic high fat diet provided to C57BL/6J male mice. In week 9, the HF-fed group had a significantly higher baseline glucose concentration than the LF- or HF+CP-fed groups. In RNAseq analysis, 4669 of 5520 genes were found to be differentially expressed. Among the genes most upregulated with the ingestion of the CP compared to HF were Ph1da1, SLc6a9, Clec4f, and Ica1 which are related to glucose homeostasis; Mt2 that may be involved steroid biosynthetic process; and Ciart which has a role in the regulation of circadian rhythm. Although "Cerrado" CP intake did not cause changes in the food intake or body weight of fed mice with HF diet, carbohydrate metabolism appeared to be improved based on the observed changes in gene expression.

16.
Food Res Int ; 157: 111367, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761627

RESUMO

Listeria monocytogenes is a foodborne pathogen that can form biofilms in food processing facilities even under unfavorable growth environment. This study aimed to evaluate the biofilm eradication ability of Listeria-specific bacteriophage (phage) cocktail (LMPC01+02+03) against L. monocytogenes young (1 day) and mature (3 days) biofilms formed on food contact materials (FCMs: polyethylene, polypropylene, and stainless steel) at 4, 15, and 30 °C. In addition, virulence-related genes and biofilm structure parameters of the phage-treated biofilms were investigated. The biofilm eradication ability of the phage cocktail was evaluated on 96 well and MBEC plate, and the results revealed that a multiplicity-of-infection (MOI) 100 of the phage cocktail exhibited the ability of eradicate biofilms. Using MOI 100, the phage cocktail treatment on the biofilms formed on FCMs for 8 h reduced over 2 log CFU/cm2 of the young biofilms, and approximately 1 log CFU/cm2 of the mature biofilms. In addition, the phage treatment against the biofilms resulted in a significant up-regulation of two genes (flaA and motB), and up/down-regulation or no changes in three genes (hlyA, prfA, and actA). Confocal and scanning electron microscopy images revealed the loss of the biofilm matrix after the phage treatment, and quantitative analysis revealed a reduction in the structural parameters of the biofilm, except the microcolonies at the substratum level, which increased. These results suggested that MOI 100 of the phage cocktail (LMPC01+02+03) was an effective tool for eradicating L. monocytogenes biofilms formed on FCMs, and it is essential to develop a countermeasure to eradicate the biofilm remaining after phage treatment.


Assuntos
Bacteriófagos , Listeria monocytogenes , Bacteriófagos/genética , Biofilmes , Contagem de Colônia Microbiana , Virulência
17.
Food Res Int ; 156: 111163, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651029

RESUMO

Foodborne pathogen-mediated biofilms in food processing environments are severe threats to human lives. In the interest of human and environmental safety, natural substances with antimicrobial properties and generally regarded as safe (GRAS) status are the futuristic disinfectants of the food industry. In this study, the efficacy of bioactive, soluble products (metabolic by-products) from lactic acid bacteria (LAB) and plant-derived essential oils (EO) were investigated as biocidal agents. The postbiotic produced by kimchi-derived Leuconostoc mesenteroides J.27 isolate was analyzed for its metabolic components to reveal its antimicrobial potential against three pathogenic microorganisms (Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Escherichia coli). Additionally, the efficacy of food-grade EO (eugenol and thymol, respectively) was also assessed in our study. Determination of the minimum inhibitory concentration (MIC) of postbiotic and EO against three tested pathogens revealed that the sub-MIC (0.5 MIC) of postbiotic and EO could efficiently inhibit the biofilm formation on both seafood (squid) and seafood-processing surfaces (rubber and low-density polyethylene plastic). Moreover, the polymerase chain reaction (PCR) analysis confirmed that the LAB J.27 isolate possesses bacteriocin- and enzyme-coding genes. The residual antibacterial activity of the produced postbiotic was maintained over a diverse pH range (pH 1-6) but was entirely abolished at neutral or higher pH values. However, the activity was unaffected by exposure to high temperatures (100 and 121 °C) and storage (30 days). Notably, the leakage of intracellular metabolites, damage to DNA, and the down-regulation of biofilm-associated gene expression in the pathogens increased significantly (p > 0.05) following the combination treatment of postbiotic with thymol compared to postbiotic with eugenol. Nonetheless, all in vitro results indicated the prospective use of combining Leu. mesenteroides J.27-derived postbiotic with both EO as a "green preservative" in the seafood industry to inhibit the formation of pathogenic microbial biofilms.


Assuntos
Anti-Infecciosos , Leuconostoc mesenteroides , Óleos Voláteis , Vibrio parahaemolyticus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Escherichia coli , Eugenol , Humanos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Estudos Prospectivos , Pseudomonas aeruginosa , Alimentos Marinhos , Timol/farmacologia
18.
Food Sci Biotechnol ; 31(3): 357-364, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35273826

RESUMO

Bacteria from the Propionibacterium genus were cocktailed to investigate growth and production of propionic acid at different temperatures and pH levels. A gas chromatograph with a flame ionization detector was also used for instrumental analysis. The Propionibacterium cocktails did not produce propionic acid at 10 and 20 °C for 10 days, but produced propionic acid at concentrations of 3265.32, 3670.76, and 1926.04 µg/mL at 25, 30, and 40 °C for 18 days, respectively. In pH tests, the cocktails did not produce propionic acid at pH 3 and 9 for 14 and 7 days, respectively. However, they produced propionic acid at concentrations of 2596.66, 2952.66, 3321.35, and 3586.95 µg/mL at pH 4, 5, 6, and 7 for 18 days, respectively. Growth characteristics of Propionibacterium cocktails by temperature and pH were set so that they reached the extinction stage after four days in the logarithmic phase.

19.
Food Microbiol ; 104: 103997, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35287816

RESUMO

Salmonella is the leading cause of zoonotic foodborne illnesses worldwide and a prevalent threat to the poultry industry. For controlling contamination, the use of chemical sanitizers in combination with biological compounds (e.g., enzymes) offers a solution to reduce the chemical residues. The current study investigated the biofilm reduction effects of a food-grade enzyme-ficin-and a common sanitizer-peroxyacetic acid (PAA)-against an emerging pathogen, Salmonella enterica ser. Thompson, on plastic, eggshell, and chicken skin surfaces. Results showed that PAA could kill S. Thompson, but ficin cannot. Maximum biofilm reduction was 3.7 log CFU/cm2 from plastic after individual treatment with PAA. However, sequential treatment of ficin and PAA led to biofilm reductions of 3.2, 5.0, and 6.5 log CFU/cm2 from chicken skin, eggshell, and plastic, respectively. Fourier-transform infrared spectroscopy and microscopic analysis confirmed that ficin increased PAA action, causing biofilm matrix destruction. Moreover, the quality of the food surfaces was only altered by 12.5 U/mL ficin and was not altered by PAA. This combined use of enzyme and sanitizer solved major safety issues and proved promising against S. Thompson-associated contaminations in poultry and poultry processing lines.


Assuntos
Ácido Peracético , Salmonella enterica , Animais , Biofilmes , Galinhas , Casca de Ovo , Ficina/farmacologia , Ácido Peracético/farmacologia , Plásticos/farmacologia , Salmonella , Sorogrupo
20.
J Dairy Sci ; 105(3): 2058-2068, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34998558

RESUMO

Microbial and chemical properties of cheese is crucial in the dairy industry to understand their effects on cheese quality. Microorganisms within this fat, protein, and water matrix are largely responsible for physiochemical characteristics and associated quality. Prebiotics can be used as an energy source for lactic acid bacteria in cheese by altering the microbial community and provide the potential for value-added foods, with a more stable probiotic population. This research focuses on the addition of fructooligosaccharides (FOS) or inulin to the Cheddar cheese-making process to evaluate the effects on microbial and physicochemical composition changes. Laboratory-scale Cheddar cheese produced in 2 replicates was supplemented with 0 (control), 0.5, 1.0, and 2.0% (wt/wt) of FOS or inulin using 18 L of commercially pasteurized milk. A total of 210 samples (15 samples per replicate of each treatment) were collected from cheese-making procedure and aging period. Analysis for each sample were performed for quantitative analysis of chemical and microbial composition. The prevalence of lactic acid bacteria (log cfu/g) in Cheddar cheese supplemented with FOS (6.34 ± 0.11 and 8.99 ± 0.46; ± standard deviation) or inulin (6.02 ± 0.79 and 9.08 ± 1.00) was significantly higher than the control (5.84 ± 0.27 and 8.48 ± 0.06) in whey and curd, respectively. Fructooligosaccharides supplemented cheeses showed similar chemical properties to the control cheese, whereas inulin-supplemented cheeses exhibited a significantly higher moisture content than FOS and the control groups. Streptococcus and Lactococcus were predominant in all cheeses and 2% inulin and 2% FOS-supplemented cheeses possessed significant amounts of nonstarter lactic acid bacteria found to be an unidentified group of Lactobacillaceae, which emerged after 90 d of aging. In conclusion, this study demonstrates that prebiotic supplementation of Cheddar cheese results in differing microbial and chemical characteristics.


Assuntos
Queijo , Envelhecimento , Animais , Queijo/análise , Suplementos Nutricionais/análise , Manipulação de Alimentos/métodos , Leite/química , Prebióticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...